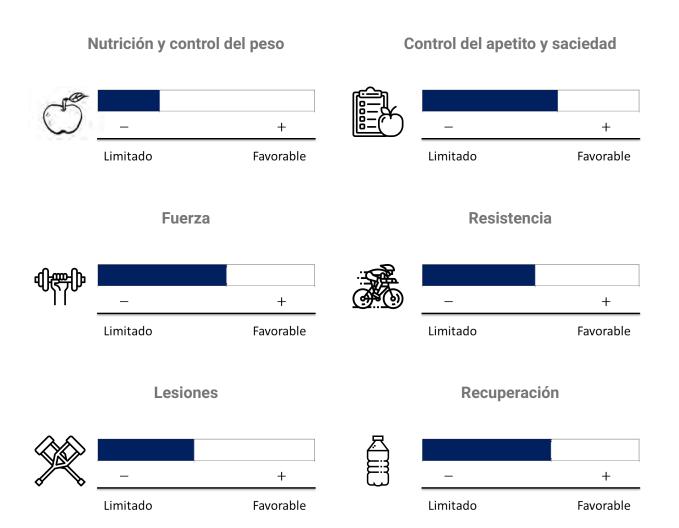


Código de la muestra: idPacient

Su referencia: referenceNumber

ÍNDICE DE CONTENIDO:


		Pá	gina			
1	INTE	ERPRETACIÓN DE SU RESULTADO	3			
2	NUT	RICIÓN PERSONALIZADA Y CONTROL DEL PESO CORPORAL	4			
	2.1	DISTRIBUCIÓN DE MACRONUTRIENTES	4			
	2.2	DISTRIBUCIÓN DE MICRONUTRIENTES	5			
	2.3	RECOMENDACIÓN NUTRICIONAL	7			
	2.4	REGULACIÓN Y CONTROL DEL APETITO Y SACIEDAD	9			
3	REN	DIMIENTO DEPORTIVO PERSONALIZADO	13			
	3.1	FUERZA	14			
	3.2	RESISTENCIA	19			
4	SUS	CEPTIBILIDAD A PADECER LESIONES DEPORTIVAS	26			
5	REC	UPERACIÓN	31			
6	RES	ULTADOS GENÉTICOS	32			
7	7 CONCLUSIONES 3					
8	GLO	SARIO DE TÉRMINOS	35			
9	9 DATOS TÉCNICOS Y CONTACTO 3					
Α	A ANEXO 1: Alimentación y nutrición					
В	ANEXO 2: Suplementación					

1 INTERPRETACIÓN DE SU RESULTADO

Con el fin de acercar el conocimiento científico al campo del deporte se ha diseñado un **test genético orientado al rendimiento deportivo** que nos proporcionan la información necesaria para saber que tipo de pautas nutricionales o entrenamientos pueden ser más adecuados para alcanzar nuestras metas a nivel deportivo.

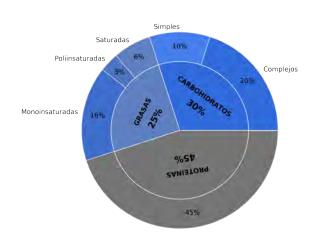
A continuación se muestra el impacto global de su perfil genético en cada una de las áreas analizadas:

2 NUTRICIÓN PERSONALIZADA Y CONTROL DEL PESO CORPORAL

En el deporte, es fundamental que el deportista alcance y mantenga un peso corporal adecuado para la práctica deportiva. Un peso óptimo se relaciona con una mayor eficiencia energética lo que reduce la fatiga durante la realización del ejercicio físico disminuyendo a su vez el riesgo de lesiones.

Por tanto, la elección de una dieta adecuada para el control del peso corporal es un factor esencial para alcanzar los objetivos deportivos de una manera eficaz y segura. Sin embargo, no todos respondemos de la misma manera al mismo tipo de dietas. Por ejemplo, cada persona presenta una sensibilidad diferente a la ingesta de carbohidratos simples, carbohidratos complejos o grasas.

En la población general, se recomienda que entre el 55 y el 60 % de la energía debe provenir de los hidratos de carbono, el 15 % de las proteínas y el 30 % de las grasas. En el caso de la nutrición deportiva los porcentajes de cada de uno de los macronutrientes de la dieta, al igual que la distribución de micronutrientes, se han de establecer por separado en función de los objetivos específicos del deporte que se practica.


En este aspecto las pruebas genéticas proporcionan una herramienta muy valiosa para poder prescribir estrategias nutricionales completamente personalizadas que se ajusten a las necesidades de cada deportista e incrementen notablemente las probabilidades de éxito para disminuir su peso corporal. A continuación le mostramos el **reparto de macro y micronutrientes ideales para su dieta**:

2.1 DISTRIBUCIÓN DE MACRONUTRIENTES

Simples 25% CARBOHIDRATOS 55% 15% 15% Monoinsaturadas

RECOMENDADO

Según el rango de distribución aceptable de macronutrientes o AMRD por sus siglas en inglés.

Recomendación obtenida a partir de su análisis genético.

Se recomienda que la distribución de macronutrientes sea: un $25\,\%$ de grasas, un $30\,\%$ de carbohidratos y completar la dieta con un $45\,\%$ de proteínas.

2.2 DISTRIBUCIÓN DE MICRONUTRIENTES

VITAMINAS: El papel principal de las vitaminas es la función enzimática, por la que se convierten en reguladores metabólicos de muchos procesos que ocurren en nuestro organismo.

Folato y Vitamina B12

La **vitamina B12** y el **ácido fólico** son nutrientes esenciales para la normalización de los niveles de homocisteína, un producto metabólico cuya excesiva presencia supone un factor de riesgo cardiovascular. Se estima que un 9% de la población y en torno a un 20% de los pacientes con problemas cardiovasculares sufren una anomalía genética que dificulta la capacidad del organismo de degradar la homocisteína.

Consumo de folato recomendado:

Recomendación diaria (µg/día):

600-800

Se le recomienda aumentar la ingesta respecto a las recomendaciones generales: 320-400

Consumo de vitamina B12 recomendado:

Recomendación diaria (mg/día):

2,6-3

Se le recomienda aumentar la ingesta respecto a las recomendaciones generales: 2-2,4

Vitamina C y E

La vitamina C y E actúan como antioxidantes. Es importante mencionar, que los radiales libres son necesarios ya que actúan como vías de señalización para activar los procesos de recuperación y adaptación muscular. De hecho, algunos ensayos clínicos han evidenciado que los suplementos de Vitamina C y Vitamina E, disminuyen los beneficios del ejercicio. Por este motivo, la toma de suplementos en forma de multivitamínicos y minerales son recomendables si se practican ejercicios a alta intensidad o larga duración y especialmente si a nivel genético los individuos presentan un funcionamiento ineficaz de los sistemas enzimáticos implicados en su homeostasis.

Consumo de vitamina C recomendado:

Recomendación diaria (mg/día):

95-100

Se le recomienda aumentar la ingesta respecto a las recomendaciones generales: 75-90 Consumo de vitamina E recomendado:

Recomendación diaria (mg/día):

16-20

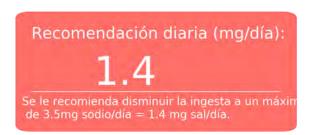
Se le recomienda aumentar la ingesta respecto a las recomendaciones generales; 12-15

Para ver los alimentos ricos en cada una de las vitaminas acceda al Anexo 1: Alimentación y nutrición y los tipos de suplementación específicos acceda al Anexo 2: Suplementación.

MINERALES: Los minerales son sustancias inorgánicas necesarias para la función celular normal. Pueden actuar por sí mismos o funcionar en combinación con otros minerales o diversos compuestos orgánicos. Los minerales que el cuerpo requiere a un nivel superior a 100 mg por día se definen como macrominerales, mientras que los minerales que se necesitan en cantidades más pequeñas se conocen como elementos traza, o microminerales.

Cinc

El **cinc** interviene en múltiples reacciones, algunas de excepcional importancia en el deportista como el transporte de CO₂. Actúa en los procesos de crecimiento, síntesis de proteínas, sistema energético, sistema inmune y liberación de radicales libres.


Magnesio

El **magnesio** mineral muy importante en numerosos procesos metábolicos, es un cofactor de absorción de insulina, hormona fundamental para la metabolización celular de proteínas y construcción de nuevos tejidos musculares así como para la transmisión del impulso nervioso y la producción de energía.

Sodio

El **sodio** actúa junto al potasio para mantener el balance de fluidos entre las células e interviene en la transmisión nerviosa para producir la contracción muscular. Además, previene la deshidratación producida por el exceso de calor y/o sol.

Para ver los alimentos ricos en cada una de los minerales acceda al Anexo 1: Alimentación y nutrición y los tipos de suplementación específicos acceda al Anexo 2: Suplementación.

2.3 RECOMENDACIÓN NUTRICIONAL

SENSIBILIDAD A LOS CARBOHIDRATOS: CONTROL DEL PESO

Carbohidratos simples: 10 %

RECOMENDACIÓN:

Existe predisposición en el sujeto a metabolizar los carbohidratos simples más **lentamente**. Se recomienda **limitar la ingesta** de dichos alimentos provenientes de azúcares refinados y melazas, puesto que pueden aumentar el riesgo de obesidad, y a largo plazo, ocasionar enfermedades cardiovasculares.

Carbohidratos complejos: 20 %

RECOMENDACIÓN:

El proceso de metabolización de carbohidratos complejos está predispuesto a ser **lento**, por ese motivo se recomienda **limitar** su ingesta.

SENSIBILIDAD A LAS GRASAS: CONTROL DEL PESO

RECOMENDACIÓN:

El sujeto presenta predisposición genética a metabolizar las grasas **lentamente**. Se recomienda consumir ácidos grasos **insaturados**, que provienen de pescados, frutas, semillas, cereales y frutos secos.

Grasas saturadas: 6 %

RECOMENDACIÓN:

Referente a los ácidos grasos saturados, aquellos que provienen mayoritariamente de fuentes animales y algunos aceites vegetales, el individuo no cuenta con los genotipos asociados a una metabolización rápida de los mismos. Se recomienda limitar su ingesta e ingerir grasas ricas en Omega-3.

Colesterol y triglicéridos

RECOMENDACIÓN:

Existe una predisposición favorable a tener menores niveles de colesterol y triglicéridos en sangre.

CAFEÍNA

El citocromo P450 (CYP) está constituido por una superfamilia enzimática, en concreto las enzimas que codificadas por el gen CYP1A2 y CYP19A2, relacionadas con el proceso de metabolización de la cafeína. Se han descubierto para ambos genes existen polimorfismos que pueden predisponer a los individuos en "rápidos" o "lentos" metabolizadores de la cafeína, donde si tú eres un metabolizador rápido de la cafeína los efectos de la cafeína en tu cuerpo tienen una menor duración que si eres un metabolizador lento.

Cafeína y estado de salud

La cafeína está relacionada con el estado de salud, se ha determinado que la probabilidad asociado a sufrir un infarto de miocardio por tomar dosis alta de café aumenta considerablemente en los metabolizadores lentos. Sin embargo, en los metabolizadores rápidos, la tendencia es la contraria y la ingesta de una a tres tazas al día de café disminuye su riesgo y tiene un efecto protector.

Tazas de café diarias recomendadas:

Se recomienda un consumo máximo de 2 tazas de café al día.

Cafeína y rendimiento deportivo

La cafeína es utilizada como ayuda ergogénica tanto en deportes aeróbicos como anaeróbicos.

DEPORTES DE RESISTENCIA: Los mecanismos propuestos para aumentar en el rendimiento implican un aumento en la oxidación de la grasa mediante la movilización de ácidos grasos libres del tejido adiposo o depósitos de grasa intramuscular, que supuestamente resultan en una supresión del metabolismo de los carbohidratos, y en consecuencia, causan una disminución en el uso de glucógeno.

Dosis: Estudios demuestran que la cafeína en dosis de 3 a 9 mg/kg (equivalente a aproximadamente 1.5 a 3.5 tazas de café de máquina en una persona de 70 kg) produce un efecto ergogénico significativo.

DEPORTES DE POTENCIA: Durante el ejercicio de corta duración y alta intensidad, el principal efecto ergogénico atribuido a la suplementación con cafeína es el aumento de producción de potencia. Se ha sugerido este efecto eregnómico por su acción en el sistema nervioso central y neuromuscular.

Dosis: Una dosis cafeína de 5 a 6 mg/kg de peso corporal (equivalente a aproximadamente a 2.5 tazas de café de máquina en una persona de 70 kg), producen aumentos significativos en la potencia aguda y el rendimiento de potencia, así como aumentos en el volumen de entrenamiento.

"TIMING":

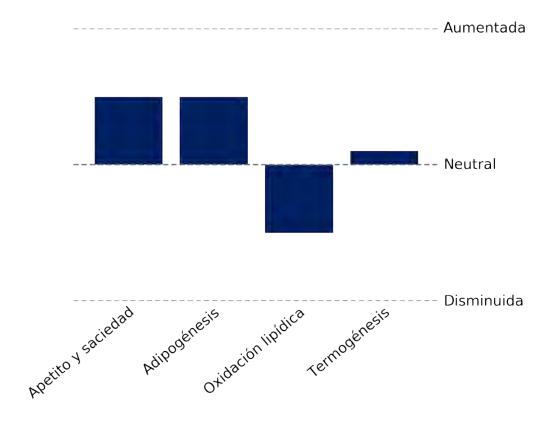
La cafeína se absorbe fácilmente después de la ingesta. Los niveles en sangre aumentan y alcanzan su punto máximo después de aproximadamente 60 minutos. Su vida media es de entre 2 y 10 horas.

Tiempo de suplementación antes de la práctica deportiva:

Se recomienda el consumo de cafeína como suplementación deportiva al menos 1 hora antes de la práctica deportiva.

RECOMENDACIÓN:

Se recomienda limitar el consumo de café a 200 mg al día, lo que equivale a consumir 2 tazas al día como máximo. Para aprovechar su efecto termogénico, se deben dejar pasar como mínimo 1 hora antes de realizar la actividad física.



2.4 REGULACIÓN Y CONTROL DEL APETITO Y SACIEDAD

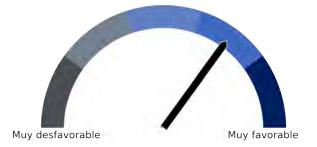
Existen algunas variantes genéticas que se relaciona con una mayor eficiencia para almacenar nutrientes. Una hipótesis explicativa a esta predisposición genética es que en las sociedades ancestrales en tiempos de escasez alimentaria, pudo suponer una ventaja competitiva configurando el denominado 'genotipo ahorrador". Al ser más eficientes para almacenar nutrientes les permitía sobrevivir más tiempo.

En el informe genético se analizan los genes asociados a un genotipo ahorrador a través de los siguientes mecanismos fisiológicos:

- (A) Mayor hiperfagia como consecuencia de una regulación defectuosa del hambre y saciedad con propensión a la sobrealimentación.
- (B) Menor metabolismo basal y termogénesis que se manifiesta con un menor gasto energético en reposo.
- (C) Baja tasa de oxidación lipídica.
- (D) Mayor capacidad para almacenar de forma eficiente la grasa, genotipo adipogénico.

CONTROL DEL APETITO Y SACIEDAD: El **control de la ingesta energética y la sensación de la saciedad** es el resultado de la interacción de las hormonas leptina, insulina y péptidos gastrointestinales relacionados con la saciedad (NPY) y el apetito (grelina).

A grandes rasgos, podemos afirmar que cuando las hormonas del apetito no se comportan adecuadamente, el cerebro en esencia **se desconecta del estómago**. Esto engaña al organismo y le hace creer que tiene hambre, cuando no es así. Además, impulsa los antojos e ingesta de alimentos altos en carbohidratos y bajos en nutrientes, que una vez consumidos se convierten en grasa con facilidad.

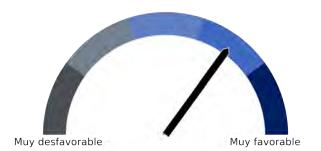


RECOMENDACIÓN:

No presentas ninguna variante genética que modifique la regulación fisiológica del apetito y saciedad. En estos casos es fundamental mantener los niveles de glucemia en sangre controlados para evitar picos de insulina que incrementen el apetito entre comidas.

Grelina:

La **grelina** se secreta en el estómago cuando esta vacío e incrementa el apetito, enviando mensajes al cerebro que necesitas comer. Así, los niveles de grelina elevados aumentan la sensación de hambre y la tendencia a consumir más alimentos.



RECOMENDACIÓN:

El genotipo del sujeto se asocia a una regulación correcta de los niveles de grelina en el organismo.

Leptina:

La **leptina** es una hormona que se asocia a una disminución del apetito a través de la activación de la termogénesis del tejido adiposo marrón. Las personas con menores niveles de leptina, o resistencia a la leptina tienen la necesidad de ingerir más cantidad de alimentos y a picar entre horas, además, tienen un especial apetito por la ingesta alta de carbohidratos de absorción rápida y generalmente no duermen bien.

RECOMENDACIÓN:

El sujeto no presenta afectación en los marcadores genéticos implicados en la regulación de la leptina.

ADIPOGÉNESIS: La **adipogénesis** es el proceso de formación de adipocitos o células grasas. Depende de procesos fisiológicos tales como la absorción, el transporte y oxidación de los ácidos grasos y la diferenciación celular de preadipocitos a adipocitos.

RECOMENDACIÓN:

El sujeto presenta predisposición genética **favorable** a que exista una **menor tendencia** a la formación de adipocitos ante el consumo de grasas.

OXIDACIÓN LIPÍDICA: Las **catecolaminas** (hormonas adrenalina y noradrenalina) juegan un papel regulatorio en la lipólisis. Mientras que la insulina actúa como inhibidora de la lipólisis, las catecolaminas adrenalina y noradrenalina, entre otras, actúan como activadoras de la misma. Estas sustancias se unen a receptores específicos de membrana y permiten con ello que se active la degradación de los ácidos grasos. Estos receptores adrenérgicos (llamados así debido a que son activados por las catecolaminas) están regulados mediante los genes ADRB.

RECOMENDACIÓN:

Se ha determinado que existe predisposición a una alteración en el proceso lipolítico.

A nivel nutricional, podemos mejorar la ruta de las catecolaminas mediante el consumo de sustancias que aumenten su concentración como la cafeína; y/o principios activos que inhiban su degradación, como las catequinas, presentes en el té verde. Los estudios parecen indicar que la combinación EGCg y cafeína sería la opción más interesante.

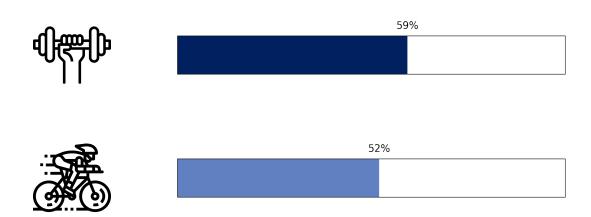
Para regular el peso corporal serán recomendables ejercicios a alta intensidad mediante los cuales se aumenta la actividad del sistema nervioso simpático y se liberen mayor cantidad de catecolaminas. Además, este tipo de entrenamientos aumentan las necesidades energéticas post-ejercicio (EPOC), manteniendo el metabolismo elevado los días posteriores al ejercicio con el fin de restaurar los procesos fisiológicos implicados en el ejercicio a partir del consumo de grasas. También es altamente recomendable incorporar entrenamientos con sobrecargas ya que músculos más grandes requieren mayor gasto energético para realizar sus funciones "acelerando" de este modo el metabolismo.

TERMOGÉNESIS DE LA GRASA PARDA: La **termogénesis de la grasa parda** es el proceso mediante el cual se mantiene la homeostasis de la temperatura corporal, generando calor a partir de su oxidación.

RECOMENDACIÓN:

Este proceso está regulado a nivel genético de forma correcta.

3 RENDIMIENTO DEPORTIVO PERSONALIZADO

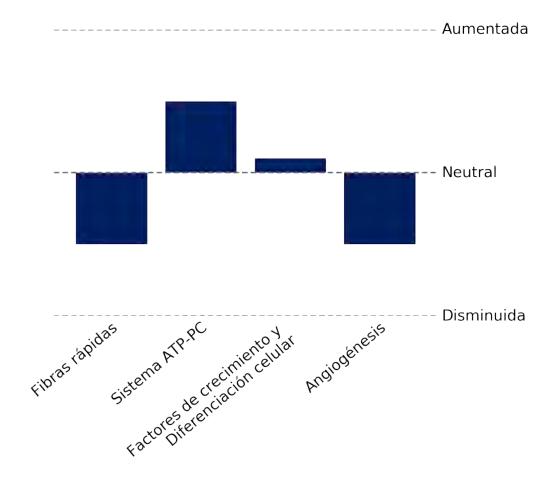

En el deporte en general y particularmente en el deporte de alto rendimiento, es muy importante conocer las ventajas y limitaciones de los deportistas para orientar su preparación física de la manera más adecuada y eficiente. Mediante el test de rendimiento deportivo, hemos seleccionado una serie de marcadores que nos proporcionan información codificada en los genes sobre diferentes características fisiológicas relacionadas con el deporte.

Conocer si un deportista tiene más aptitudes para la fuerza o para la resistencia, tiene mayor o menor capacidad aeróbica o si tiene una mayor predisposición a determinadas lesiones, son parámetros que un preparador físico puede utilizar para llevar el rendimiento deportivo a otro nivel.

Esta información adicional, permite realizar entrenamientos de una manera más personalizada con los deportistas, diseñando programas de entrenamiento que se ajusten a sus características. La dosificación de la carga de entrenamiento, la selección del tipo de entrenamiento y el tiempo de recuperación, son 3 variables fundamentales en el diseño y programación del ejercicio físico, que gracias al test de rendimiento deportivo se podrán personalizar al máximo.

Conocer el perfil genético permite desarrollar las capacidades potenciales del atleta, así como reforzar las débiles, optimizando el proceso de entrenamiento. En deportistas de élite dónde el más mínimo detalle es importante, utilizar correctamente la información que codifican estos genes puede marcar la diferencia.

¿EJERCICIOS EXPLOSIVOS O DE LARGA DURACIÓN?



3.1 RENDIMIENTO DEPORTIVO: FUERZA

El estudio genético incluye las variantes que regulan los procesos fisiológicos que mayor influencia tienen en el rendimiento deportivo, en disciplinas con altas exigencias de fuerza y potencia. Estos datos exponen las cualidades innatas del sujeto para manifestar fuerza y potencia muscular, así como la predisposición a desarrollar una mayor masa muscular, que está ligada a la relación entre la cantidad de fibras de contracción rápida y la cantidad de fibras de contracción lenta.

Las particularidades de cada individuo implican que algunos cuenten con una ventaja competitiva en ciertas disciplinas deportivas, y debido a que las necesidades de cada disciplina deportiva son diferentes, suponen una desventaja para otras. Estas particularidades se deben considerar al definir los métodos de entrenamiento, pautas alimentarias y ayudas ergogénicas que mejor se ajusten al perfil genético del sujeto, para potenciar su manifestación.

A continuación se detalla la predisposición del sujeto, en disciplinas donde la fuerza y la potencia muscular son factores clave para obtener un rendimiento satisfactorio:

FIBRAS RÁPIDAS: Las **fibras de contracción rápida** se contraen al menos dos veces más rápidamente que las fibras de contracción lenta en los movimientos explosivos. Se ha demostrado que en los humanos la velocidad de contracción de los músculos es un factor restrictivo para el rendimiento donde la manifestación de la velocidad es clave. Por tanto, los sujetos con fibras rápidas tienen una predisposición más favorable para alcanzar un mayor rendimiento en especialidades de fuerza, potencia y sprint.

RECOMENDACIÓN:

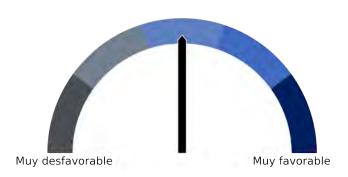
En términos de potencia muscular, el sujeto manifiesta una predisposición favorable para deportes de intensidad moderada y larga duración.

Para el desarrollo de fuerza muscular se recomienda emplear cargas submáximas, entre el 67 % y el 85 % de 1 RM, en las que se entrenará hasta el fallo muscular. Las pausas de recuperación serán incompletas y tendrán una duración de en torno a un minuto.

SISTEMA ATP-PC: El Adenosín trifosfato (ATP) es un nucleótido implicado en la obtención de energía celular. La rapidez con la que se produce la resíntesis de ATP por la vía anaeróbica es un factor clave para mantener un rendimiento elevado en deportes de fuerza y potencia.

RECOMENDACIÓN:

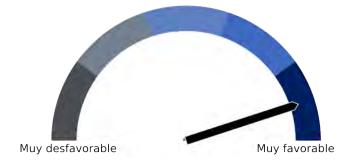
El sujeto presenta predisposición a que la velocidad de acción de la enzima creatin kinasa muscular sea **adecuada** para que tenga lugar una resíntesis rápida del ATP a partir de la vía de los fosfatos.


La suplementación con creatina puede ser recomendable ya que el sujeto presenta predisposición genética a poder metabolizarla de forma **eficiente**. Se puede consultar en el 'Anexo 2' que suplementos contienen monohidrato de creatina.

FACTORES DE CRECIMIENTO Y DIFERENCIACIÓN CELULAR: Se han identificado tres mecanismos principales que estimulan el crecimiento muscular: la tensión mecánica, el estrés metabólico y el daño muscular. Estos mecanismos estimulan vías de señalización molecular que activan la síntesis de proteínas musculares. Una de las más conocidas es la vía de señalización mTOR, que actúa como mediadora de las células satélite, que se localizan en la membrana basal. Su activación produce la proliferación y diferenciación de células satélite en el interior de la fibra con el objetivo de crear nuevas miofibrillas, que reparan el tejido muscular dañado durante el entrenamiento.

Niveles de óxido nítrico:

El óxido nítrico (NO) tiene efectos sobre el tono vascular y el suministro de sangre a los músculos que trabajan, y puede influir en el suministro de la glucosa del músculo esquelético durante el ejercicio, que es el sustrato preferido durante las actividades anaeróbicas de alta intensidad. NO también está involucrado en la transcripción de proteínas musculares esqueléticas, la activación / proliferación de células satélite musculares y el flujo sanguíneo al músculos esquelético.

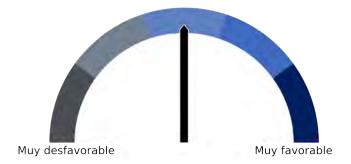


RECOMENDACIÓN:

El sujeto no presenta una mayor producción de óxido nítrico.

Niveles de Angiotensinógeno II:

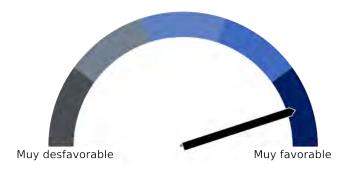
La enzima convertidora de angiotensina (ACE) cataliza la producción de angiotensina II (ANG II) a partir de ANG I, que aumenta la presión arterial y promueve la retención de sodio. Además, ANG II está involucrado en la inflamación, el crecimiento celular, la proliferación, la regulación de la respuesta inmune y la neuro-modulación central.


RECOMENDACIÓN:

El sujeto presenta una **mayor predisposición** a tener mayores niveles de ANG II, y en consecuencia, te favorece para conseguir mayor hipertrofia, tanto en fuerza como resistencia.

Miostatina:

La miostatina es una proteína inhibidora natural del crecimiento muscular, que controla la proliferación y diferenciación celular durante la miogénesis. Existen variaciones genéticas muy poco frecuentes que influyen en la manifestación de esta proteína, cuando menor sea su expresión, mayor será el desarrollo muscular, favoreciendo la hipertrofia.



RECOMENDACIÓN:

A partir de las variantes genéticas analizadas se ha determinado que el sujeto no presenta un especial beneficio para el desarrollo muscular.

Receptores de la hormona TSH:

El gen TRHR codifica los receptores para la hormona tirotropina (TSH). La TSH activa la producción de las hormonas triyodotironina (T3) y tiroxina (T4). La tiroxina o T4 se relaciona con el crecimiento muscular ya que participa en la formación de células satélites en el músculo-esquelético. Se conoce que cuando los valores de T3 son bajos, el ritmo de la síntesis proteica disminuye y, por consiguiente, el anabolismo muscular.

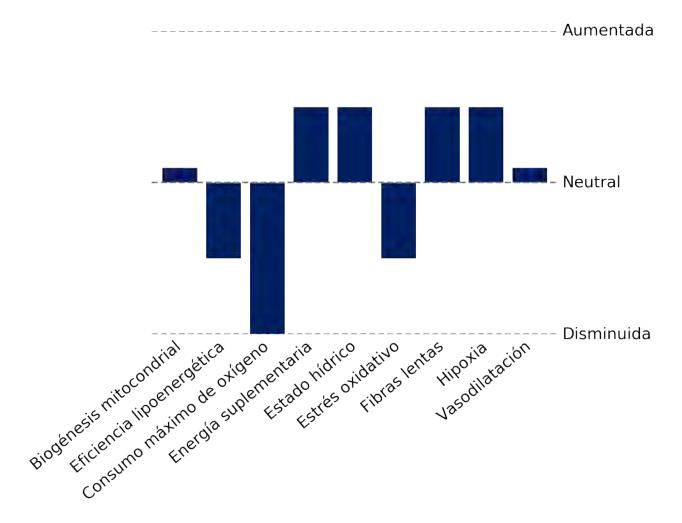
RECOMENDACIÓN:

Cuando la TRH se une a la TRHR, se producen diferentes vías de señalización que estimulan a la glándula tiroides para que produzca tiroxina, la cual desempeña un papel en el crecimiento y desarrollo del músculo esquelético.

ANGIOGÉNESIS: La expansión de las redes microvasculares es importante para mantener la capacidad de perfusión del músculo esquelético hipertrofiado, de modo que un aumento en el área de la sección transversal (CSA) esté acompañado por un aumento en la relación capilar/fibra (C/Fi). Los aumentos en la fibra muscular CSA que se produce en una menor PO $_2$ podrían provocar una regulación al alza de las vías que involucran el factor inducible por hipoxia 1 α (HIF1 alpha) y el factor de crecimiento endotelial vascular (VEGF) para promover la angiogénesis.

RECOMENDACIÓN:

A partir de las variantes genéticas analizadas se ha determinado que el sujeto no presenta un especial beneficio para la angiogénesis.


3.2 RENDIMIENTO DEPORTIVO: RESISTENCIA

El rendimiento deportivo en los deportes de larga duración está muy condicionado por el funcionamiento del metabolismo aeróbico. A nivel fisiológico es dependiente de factores hemáticos y respiratorios que captan y transportan el oxígeno hasta las mitocondrias de las fibras musculares donde tiene lugar la producción de energía a partir de la oxidación de los sustratos energéticos disponibles. Todos los factores que influyen en la cantidad de mitocondrias así como en la calidad de su funcionamiento serán determinantes. Por ejemplo, los radicales libres que son generados durante el metabolismo energético.

A nivel energético, los sustratos más rentables a partir de los cuales obtener la energía lo constituyen las grasas. En consecuencia, la disponibilidad de los ácidos grasos para que sean oxidados también es un factor crítico en el rendimiento en las disciplinas de resistencia.

Otros factores como el estado hídrico del atleta también afectarán al desempeño del atleta, debido a que los procesos de deshidratación influyen en la capacidad termorreguladora del organismo, el funcionamiento muscular y la obtención de energía, que puede verse reducida por insuficiencia de la vía oxidativa o el transporte del ácido láctico.

Existen diferencias genéticas que implican que se tenga una mayor eficiencia en estos procesos fisiológicos descritos, y por tanto, que se tenga una predisposición más o menos favorable para la práctica de disciplinas de resistencia. A continuación se detalla la predisposición del sujeto, en disciplinas donde la resistencia aeróbica es clave para obtener un rendimiento satisfactorio.

BIOGÉNESIS MITOCONDRIAL: Las **mitocondrias** son estructuras que producen la energía necesaria para la contracción muscular a partir de la oxidación de glucosa, ácidos grasos y/o aminoácidos. A mayor densidad, número y tamaño, más ATP se produce a partir de la vía oxidativa.

RECOMENDACIÓN:

El sujeto no presenta afectación en los marcadores genéticos analizados asociados a la biogénesis mitocondrial, por lo tanto la capacidad de oxidación de lípidos y lactato no está genéticamente afectada.

EFICIENCIA LIPOENERGÉTICA: Proceso metabólico de obtención de energía a partir de las grasas.

RECOMENDACIÓN:

El sujeto presenta un afectación en la obtención energética a partir de las grasas. Dado que su uso es clave para el rendimiento en pruebas de larga duración a continuación se indican algunas estrategias que se pueden implementar para mejorar su utilización como combustible.

- 1. Utilizar activadores metabólicos que aumenten la ruta de las catecolaminas.
- 2. Es altamente recomendable utilizar durante el entrenamiento y competición suplementación deportiva que permita restaurar de forma rápida los depósitos de glucógeno ya que al estar lipolisis está afectada, se utilizará en mayor proporción a bajas intensidades.
- 3. Consumir café ya que facilita la descomposición de las células de grasa y posterior vertido al torrente sanguíneo para ser utilizadas. La dosis de café y tiempo de administración dependerá de la capacidad de absorción del individuo la cual se ha determinado en el test genético.

CONSUMO MÁXIMO DE OXÍGENO: El consumo máximo de oxígeno es el criterio más empleado para evaluar la capacidad de rendimiento aeróbico y se encuentra directamente relacionado con el sistema cardiopulmonar, el metabolismo del músculo estriado y las variaciones de la contractilidad muscular. Diversos estudios corroboran que mediante el entrenamiento se puede mejorar como máximo un 30 %. La predisposición genética del sujeto juega por lo tanto un papel central. A nivel fisiológico, el VO₂ max es dependiente de:

- · La capacidad de obtención de energía a partir de los procesos aeróbicos.
- Factores hemáticos y respiratorios: captadores y transportadores de oxígeno.

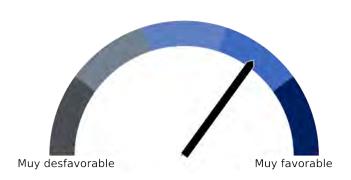
El VO₂ max es determinante en pruebas de corta duración y limitante en en pruebas de larga duración, ya que en este tipo de pruebas influyen más factores como son: la economía o el umbral anaeróbico; no obstante un consumo máximo muy bajo condicionará el desarrollo del umbral.

UMBRAL ANAERÓBICO:

El término **umbral anaeróbico** se emplea para describir un fenómeno fisiológico en el que a partir de una intensidad de esfuerzo el lactato se incrementa de forma constante. En la práctica, el umbral láctico determina la fracción del consumo máximo que puede ser mantenida por un individuo en competiciones de resistencia. Los atletas con un mayor rendimiento deportivo en pruebas de larga duración acumulan menos lactato a intensidades más elevadas. Este fenómeno se conoce como **estado estable del lactato (MLSS) o inicio del acúmulo de lactato en sangre (OBLA)** y podría ser el factor más determinante para el rendimiento en estas disciplinas deportivas.

RECOMENDACIÓN:

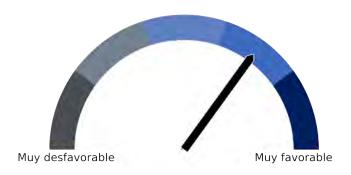
El sujeto presenta una predisposición genética **desfavorable**, por lo tanto su volumen máximo de oxígeno **potencial** supone una desventaja durante esfuerzos prolongados.


Se puede elevar el consumo máximo de oxígeno mejorando la eficiencia energética a través del entrenamiento técnico y entrenamiento del umbral anaeróbico así como mejorando los niveles de **fuerza muscular**. Sincronizar las cadenas cinéticas implicadas en el movimiento aumenta la eficiencia y por otro lado, aprovechar la fuerza generada para transferirla al gesto deportivo reduce el gasto energético. Asimismo, aumentando la fuerza muscular máxima se disminuye el porcentaje de esfuerzo aplicado en ejercicios prolongados.

ENERGÍA SUPLEMENTARIA: Capacidad de las fibras musculares de utilizar la energía producida por otras alternativas a la fosforalización oxidativa.

Sistema ATP-PC:

En el ejercicio de resistencia, la mayor parte del ATP se resintetiza mediante la fosforilación oxidativa en las mitocondrias. El desglose de PCr neto y la contribución neta de PCr a la producción de energía son mínimos. Pero la creatina y la PCr proporcionan un sistema de transporte para la transferencia de grupos de fosfato de alta energía del sitio de producción de ATP (las mitocondrias) al sitio de consumo de ATP (las miofibrillas contraídas).



RECOMENDACIÓN:

La vía de los fosfatos funciona adecuadamente y el ATP producido puede utilizarse como energía suplementaria para la vía aeróbica y mejorar el rendimiento en deportes de larga duración.

Vía de los purín nucleótidos:

El gen AMPD1 proporciona instrucciones para producir una enzima llamada adenosina monofosfato (AMP) desaminasa. Esta enzima se encuentra en los músculos utilizados para el movimiento (músculos esqueléticos), donde desempeña un papel en la producción de energía. Específicamente, durante la actividad física, esta enzima convierte una molécula llamada monofosfato de adenosina (AMP) en una molécula llamada monofosfato de inosina (IMP) como parte de un proceso llamado ciclo de nucleótidos de purina.

RECOMENDACIÓN:

El sujeto presenta predisposición genética **favorable** para aprovechar la energía producida en la mitocondria gracias a la metabolización del AMP.

ESTADO HÍDRICO: La deshidratación priva al organismo de defenderse del aumento de la temperatura corporal consecuencia del ejercicio físico a través de la evaporación del sudor. En casos extremos, un deshidratación excesiva pueda dar como resultado un golpe de calor (7 al 8 % del peso total) con efectos muy nocivos para la salud e incluso la muerte (más del 8 % del peso total).

RECOMENDACIONES GENERALES PARA HIDRATARSE EN EL DEPORTE:

Antes del ejercicio: beber lentamente de 5 a 7 ml/kg en las 4 horas anteriores de iniciar el ejercicio.

Durante el ejercicio: beber entre 6 a 8 ml/kg/h, aproximadamente de 400 a 500 ml/h o 150-200 ml cada 20 minutos con una temperatura entre los 15 a 21°C. Respecto al contenido de la bebida tendrán un contenido calórico entre 80 kcal/1000 ml y 350 kcal/1000 ml; con un 75 % de la energía procedente de una mezcla de carbohidratos con alta carga glucémica. La osmolaridad de la bebida deberá estar comprendida entre 200-330 mOsm/kg de agua y nunca sobrepasar los 400 mOsm/kg de agua. Deberán aportar un rango de ión sodio de 40-50 mmol/l e ión potasio de 2-6 mmol/l. Las diferencias de rango han de estar personalizadas en función de las características del deporte, condiciones medio ambientales y tolerancia del deportista.

Otras: Será recomendable evitar entrenar en ambientes calurosos y con gran humedad, así como evitar la ingesta de diuréticos, por ejemplo, la cafeína (hasta 300 mg no es diurético).

RECOMENDACIÓN:

El sujeto presenta predisposición genética **favorable** a que el proceso de deshidratación sea correcto.

ESTRÉS OXIDATIVO: El organismo dispone de enzimas con actividad antioxidante como la superóxido dismutasa, glutatión peroxidasa, glutatión reductasa y catalasa. Una alteración en los genes que regulan su expresión puede disminuir la capacidad antioxidativa del organismo, y por lo tanto, aumentar el efecto oxidativo que tienen los radicales libres sobre las células del organismo y afectar a la función mitocondrial, la fuerza, el tono muscular y el envejecimiento, entre otros factores.

RECOMENDACIÓN:

A partir de las variantes genéticas analizadas se ha determinado que el deportista genéticamente posee un funcionamiento **ineficaz** de los sistemas enzimáticos que amortiguan la generación excesiva de radicales libres. Estos radicales pueden repercutir negativamente aumentando el riesgo de sufrir procesos inflamatorios, lesiones musculares, envejecimiento, etc.

Recomendamos la ingesta de alimentos ricos en **antioxidantes**, los cuales son aquellos que contienen principalmente las vitaminas A,E y C.

Suplementación: antioxidantes y multivitamínicos.

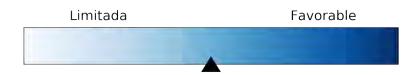
FIBRAS LENTAS: Las **fibras de contracción lenta** son más efectivas para el rendimiento en pruebas de resistencia porque su velocidad de contracción es menor y son más resistentes a la fatiga.

RECOMENDACIÓN:

El sujeto presenta una **mayor predisposición** genética a manifestar fibras musculares de contracción lenta y una predisposición mayor a la conversión de fibras musculares rápidas en lentas. Estas características representan un beneficio para el rendimiento en disciplinas de larga duración al poseer el músculo esquelético una mayor capacidad oxidativa mitocondrial para utilizar las grasas como sustrato energético aumentando la capacidad para entrenar y competir a intensidades submáximas durante un tiempo prolongado.

RENDIMIENTO EN HIPOXIA: Cuando el organismo se somete a situaciones fisiológicas en las que existe un **déficit de oxígeno**, se desencadenan una serie de adaptaciones mediadas genéticamente a nivel cardiovascular, respiratorio y muscular, que se traducen en la mejora de dichos procesos y, por consiguiente, en un incremento del rendimiento deportivo.

Ante los mismos estímulos existen individuos que se adaptan con mayor facilidad que otros, en función de los genotipos presentes en los genes que regulan estos mecanismos fisiológicos. Este aspecto confiere una ventaja competitiva en deportes de resistencia ya que permite mantener un rendimiento elevado en estado de déficit de oxígeno, como pueden ser esfuerzos en altitud o intensidades en las que existe un compromiso del metabolismo aeróbico, ritmos altos de carrera, cambios de ritmo, etc.


RECOMENDACIÓN:

A partir de las variantes genéticas analizadas se ha determinado que el deportista posee una **respuesta adaptativa neutra** ante situaciones de hipoxia. Este aspecto le confiere una ventaja competitiva en deportes de resistencia ya que le permitirá mantener un rendimiento elevado en estados con déficit de oxígeno, como pueden ser esfuerzos en altitud o intensidades en las que existe un compromiso del metabolismo aeróbico (cambios de ritmo, ritmos altos de carrera, etc.).

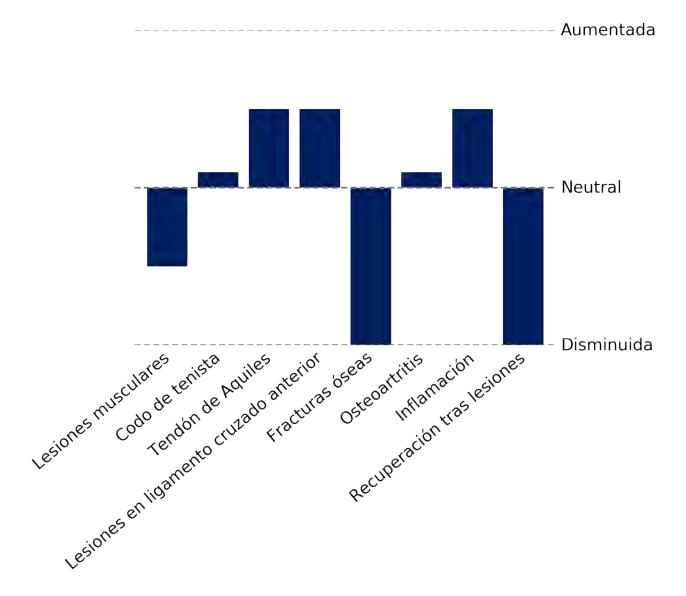
Podemos potenciar y/o aprovechar está ventaja que presenta a nivel genético incorporando entrenamientos que estimulen estas adaptaciones fisiológicas tales como son el entrenamiento en altura y/o entrenamientos que simulen entrenamientos en altitud como el denominado entrenamiento hipóxico intermitente (IHT) mediante máscara de hipoxia. Además de los descritos, existen multitud de protocolos, que para su implementación deberá estar prescrito y pautado por un especialista.

VASODILATACIÓN: El flujo sanguíneo del músculo esquelético se adapta a las demandas metabólicas. La regulación se produce a partir de la interacción de la actividad de la vasoconstricción neural y las sustancias vasoactivas derivadas localmente en tejidos activos, endotelio vascular y glóbulos rojos. En este sentido, dos mecanismos juegan un papel central:

- SISTEMA RENINA-ANGIOTENSINA: Es el sistema por el cual la angiotensina II contrae los vasos sanguíneos arteriales y estimula la corteza suprarrenal para liberar aldosterona, lo que causa la retención de sodio y sal por los riñones.
- 2. NOS: El óxido nítrico (NO) sirve que dilata los vasos sanguíneos y disminuye la resistencia vascular.

RECOMENDACIÓN:

El sujeto no presenta afectación en los marcadores genéticos analizados asociados a la vasodilatación. Una vasodilatación efectiva mejora el rendimiento en pruebas de larga duración donde las demandas de oxígeno y sustratos energéticos son elevadas. Recomendamos la suplementación con L-Arginina ya que la enzima NOS3 se ha determinado que funciona de forma eficientemente.



4 SUSCEPTIBILIDAD A PADECER LESIONES DEPORTIVAS

Mediante el test genético podemos conocer la predisposición individual a padecer, en mayor o menor medida, lesiones en los tejidos blandos (músculos, ligamentos y tendones) y en los huesos y/o articulaciones (osteoartritis y fracturas). Los marcadores genéticos que se analizan se relacionan con:

- (A) Los mecanismos fisiológicos que regulan la síntesis de colágeno y su ensamblaje para configurar la rigidez y flexibilidad de los ligamentos y tendones.
- (B) La expresión de la proteínas elastina y alfa-actinina 3 y su relación con la resistencia y elasticidad de las fibras musculares.
- (C) Los procesos de mantenimiento, regeneración y reparación de huesos, cartílago y tendones.

Este conocimiento permitirá poder establecer protocolos de entrenamientos y pautas nutricionales individualizadas dirigidas a regular los procesos fisiológicos mediante los cuales podamos paliar el riesgo detectado a sufrir lesiones deportivas. No hay que olvidar, no obstante, que el primer factor de riesgo para padecer una lesión es haber padecido una lesión previa.

LESIONES EN TEJIDOS BLANDOS:

Los tendones y ligamentos están constituidos por fibroblastos y una matriz extracelular de colágeno y proteínas. La composición de las fibras de colágeno determina la resistencia que ofrecen cuando son sometidas a cargas mecánicas, variando el riesgo de lesión de la persona. La estructura de estas fibras está influida por la predisposición genética de cada individuo. La mayoría de las estructuras están compuestas principalmente de colágeno tipo I, III y V.

- Colágeno de tipo I se forma en fibrillas y es en gran parte responsable de las propiedades mecánicas de los ligamentos y tendones.
- · Colágeno de tipo III está involucrado en la reparación y el desarrollo del colágeno.
- Colágeno de tipo V regula la formación de fibrillas de colágeno.

ROTURAS MUSCULARES: La arquitectura y composición de las fibras musculares van a determinar una menor o mayor flexibilidad que influirá en el mayor o menor riesgo a padecer lesiones musculares. Así, los músculos con menor proporción de la proteína alpha actinina 3 son menos flexibles y tienen un mayor riesgo de lesión.

Las lesiones musculares se producen generalmente al realizar acciones explosivas en las que existe un **estiramiento activo** de las fibras musculares más allá de su longitud óptima.

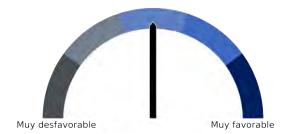
RECOMENDACIÓN:

El sujeto presenta predisposición genética a tener una **menor resistencia y elasticidad** en las fibras musculares. Este hecho aumenta el riesgo de sufrir lesiones músculo-esqueléticas, y en caso de lesión, pueden tener un carácter más severo, requiriendo más tiempo de recuperación.

Como medida preventiva frente a las lesiones musculares, se recomienda una correcta dosificación de la carga de entrenamiento y el consumo de **recuperadores musculares**. Los recuperadores musculares actúan estimulando la síntesis de proteínas musculares y el tejido conjuntivo de la fibra muscular.

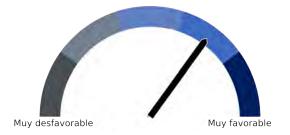
Para favorecer una mayor respuesta anabólica se recomienda el consumo de BCCAAs y de glutamina. Pueden consultarse los alimentos más apropiados en la tabla adjunta al final del informe.

Además, se recomienda incorporar entrenamientos de sobrecarga excéntrica, ya que producen adaptaciones a nivel de arquitectura muscular. Favorecen la adición de sarcómeras en serie en las fibras musculares, de modo que el músculo es capaz de resistir tracciones en **rangos articulares mayores**.


LESIONES EN TENDONES Y LIGAMENTOS: Los tendones unen los músculos a los huesos. Transmiten las fuerzas longitudinales producidas por los músculos que se contraen al esqueleto para que las articulaciones puedan flexionarse y extenderse, permitiendo así el movimiento. Por otro lado, los ligamentos conectan los huesos entre sí. Su función principal es proporcionar estabilidad a la articulación que la rodea.

Codo de Tenista:

La lesión de los tendones de los músculos extensores del codo, comúnmente conocida como codo de tenista, es una de las más habituales entre individuos que practican deportes de raqueta.

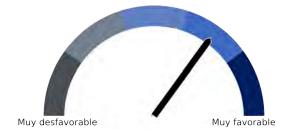


RECOMENDACIÓN:

El sujeto **no presenta** predisposición genética a las lesiones en los tendones de los músculos extensores del codo.

Tendón de Aquiles:

Otra de las lesiones más habituales es la lesión del tendón de Aquiles, particularmente en deportes de carrera y salto.



RECOMENDACIÓN:

El sujeto no presenta afectación genética específica a padecer lesiones en el tendón de Aquiles.

Ligamento cruzado anterior:

Dentro de la articulación de la rodilla hay ligamentos intraarticulares llamados ligamentos cruzados (anterior y posterior). Estos dos ligamentos se cruzan entre sí, brindando soporte adicional a la rodilla y evitando el movimiento antero-posterior. El movimiento más allá del rango de movimiento normal de cualquier articulación causará una distensión del ligamento y la posible inestabilidad de la articulación.

RECOMENDACIÓN:

El sujeto **no presenta** afectación en los marcadores genéticos relacionados con el riesgo asociado a la lesión del ligamento cruzado anterior.

LESIONES EN HUESOS Y ARTICULACIONES:

FRACTURAS POR ESTRÉS: La actividad deportiva incrementa las cargas que recibe el sistema esquelético. Estas cargas, siempre y cuando estén dentro de la tolerancia de los tejidos, son un **estímulo** que favorece su crecimiento. Sin embargo, cuando exceden la capacidad de remodelación ósea del tejido se pueden producir **fracturas por sobrecarga**.

Esta adaptación, que está regulada por los procesos de crecimiento y diferenciación celular a nivel óseo y articular, viene en parte condicionada por la genética de cada individuo.

SU RECOMENDACIÓN:

El sujeto presenta un cierto grado de predisposición a sufrir fracturas por estrés. Para prevenir las lesiones por estrés y desgaste, se recomienda aumentar el consumo de glucosamina, condroitina y MSM, para reforzar huesos y articulaciones.

OSTEOARTRITIS: La degeneración de las articulaciones, **osteoartritis**, es un proceso que tiene lugar a lo largo de los años en función del nivel de actividad física del individuo, a mayor actividad, mayor impacto articular.

SU RECOMENDACIÓN:

Se ha determinado que el sujeto no presenta afectación en los marcadores genéticos asociados al crecimiento y la diferenciación celular.

INFLAMACIÓN: La inflamación aguda post-ejercicio es un proceso fisiológico mediante el cual el organismo repara los daños de los tejidos. Empieza con una **fase proinflamatoria**, seguida de una **respuesta antiinflamatoria**, en la que se repara el tejido dañado. El **equilibrio** entre estas dos fases es la clave para una adecuada capacidad de recuperación y adaptación.

RECOMENDACIÓN:

El sujeto presenta una configuración genotípica asociada a una respuesta inflamatoria **adecuada**. Esta fase pro-inflamatoria es necesaria para desencadenar respuestas adaptativas **positivas** frente al entrenamiento y la competición.

RECUPERACIÓN TRAS LESIONES:

El tiempo de recuperación tras sufrir un a lesión está ligado a los procsos que regulan la homeostasis de los tejidos y por los marcadores genéticos que codifican la proteína elastina.

RECOMENDACIÓN:

En cuanto a la recuperación tras una lesión, se ha determinado que el sujeto manifiesta un cierto grado de predisposición genética **desfavorable**. Puede implicar un tiempo de recuperación mayor, consecuencia de una alteración en los procesos que mantienen la homeostasis de los tejidos, así como por los marcadores asociados a la presencia de la **proteína elastina**.

Tras una lesión se recomienda establecer un equilibrio entre la carga de entrenamiento y la recuperación, necesario para producir adaptaciones orgánicas y ajustado a la tolerancia de los tejidos.

Para mejorar la resistencia de la elastina, se recomienda la ingesta de **magnesio**, mineral que forma parte de su estructura y mejora la unión entre las fibras.

5 RECUPERACIÓN

En la siguiente tabla se ilustran los aspectos fundamentales a considerar para favorecer el proceso de recuperación del deportista.

Los elementos clave del proceso de recuperación lo constituyen una correcta ingesta nutricional e hidratación mediante la cual se cubran los requerimientos de calorías, macronutrientes y agua que se ven incrementados por las exigencias de los entrenamientos y competición en el deportista. De forma esquemática se indica que vías metabólicas pueden estar afectadas y si el deportista puede tener una o menor predisposición a procesos de deshidratación.

La respuesta inflamatoria y redox que tiene lugar tras someter el organismo a las cargas de entrenamiento son esenciales para activar las vías de síntesis de proteínas y supresión de las vías de degradación de proteínas con las que el deportista se adapta al entrenamiento. Finalmente, la composición y tipo de fibras musculares van a influir en el tiempo de recuperación y requerimientos nutricionales específicos para favorecer el proceso de recuperación.

Categoría	Su resultado	Recomendación
Sistema ATP-PC Fuerza	Ø	Apartado 3.1.2
Biogénesis mitocondrial		Apartado 3.2.1
Lipólisis	8	Apartado 3.2.2
Sistema ATP-PC Resistencia		Apartado 3.2.4a
Vía de los purín nucleótidos		Apartado 3.2.4b
Estrés hídrico		Apartado 3.2.5
Estrés oxidativo	8	Apartado 3.2.6
Fibras musculares		Apartado 3.2.7
Inflamación	Ø	Apartado 4.5

LEYENDA

Predisposición genética favorable para esta categoría.

Predisposición genética limitada para esta categoría, click en el link de la Sección para acceder a su recomendación.

6 RESULTADOS GENÉTICOS

ACE DD convierté a la angiotensina l'inactiva en angiotensina l'activa dando lugar una respuesta vasoconstrictora a través del eje renina-angiotenstina-aldesterona (RAA). ACTN3 TT Estabiliza el aparato contráctil muscular en las fibras musculares de contracción rápida. ADRB2 GG Regula la expresión de los receptores adrenérgicos β tipo III. ADRB3 AA Regula la expresión de los receptores adrenérgicos β tipo III. AGT AG El angiotensinógeno es un componente esencial del sistema renina-angiotensina que regula la resistencia vascular y la homeostasis de sodio por lo tanto, determina la presión arterial. AMPD1 GG Codifica para la proteína adenosina monofosfato deaminasa implicada en los procesos de obtención de energía a nivel de la mitocondria. APOA2 GG Codifica a la poliproteína? 2, la segunda proteína más importante que conforma las lipoproteínas de alta densidad. APOA5 AA Codifica la apoliproteína A-V, una lipoproteína de alta densidad que transporta el colesterol de los tejidos hasta el higado. BDKRB2 ID Codifica la enzima creatin kinasa muscular, encargada de proporcionar un grupo fosfato a la creatina. COL1A1 CA Codifica la enzima creatin kinasa muscular, encargada de proporcionar un grupo fosfato a la creatina. COL5A1 CT Codifica la proteína colágeno tipo I alfa I, q	Gen	Su genotipo	Descripción
contracción rápida. ADRB3 GG Regula la expresión de los receptores adrenérgicos β tipo II. AGT AG El angiotensinógeno es un componente esencial del sistema renina-angiotensina que regula la resistencia vascular y la homeostasis de sodio por lo tanto, determina la presión arterial. AMPD1 GG Codifica para la proteína adenosina monofosfato deaminasa implicada en los procesos de obtención de energía a nivel de la mitocondría. APOA2 GG Codifica a la apoliproteína 2, la segunda proteína más importante que conforma las lipoproteínas de alta densidad. APOA5 AA Codifica la apoliproteína A-V, una lipoproteína de alta densidad que transporta el colesterol de los tejidos hasta el higado. BDKRB2 ID Codifica la bradicina, que está involucrada en la vasodilatación dependie del endotelio. CKM TT Codifica la enzima creatin kinasa muscular, encargada de proporcionar un grupo fosfato a la creatina. COL1A1 CA Codifica para la proteína colágeno tipo I alfa I, que es el mayor constituyer de la matriz ósea, formando fuertes empaquetamientos de fibras en los tendones y ligamentos. COL5A1 CT Codifica para el colágeno de cadena alfa 1 tipo V, se trata de una proteína de se necuentra en ligamentos y tendones. COL5A1 CT Codifica la proteína de represión catabólica, un polipéptido que influye en transporte de la glucosa. CYP AG Codifica nuna serie de enzimas que participan en la primera fase (biotrans mación) de los procesos de detoxificación del higado. ELN TT Codifica la proteína tropoelastina, cuya unión forma la elastina, que e componente principal de las fibras elásticas, proporcionando resistencia y flexibilidad al tejido conectivo. FABP2 CC Codifica las proteínas encargadas de la absorcióón y transporte de los ácidos grasos. Se relaciona con la regulación de los niveles de ghrelina, la cual increme el apetito y se asocia con una mayor predisposición a comer alimentos elevado contenido calórico.	ACE	DD	
ADRB3 Regula la expresión de los receptores adrenérgicos β tipo III. ADRB3 AA Regula la expresión de los receptores adrenérgicos β tipo III. AGT AG El angiotensinágeno es un componente esencial del sistema renina-angiotensina que regula la resistencia vascular y la homeostasis de sodio por lo tanto, determina la presión arterial. AMPD1 GG Codifica para la proteína adenosina monofosfato deaminasa implicada en los procesos de obtención de energía a nivel de la mitocondria. APOA2 GG Codifica a la apoliproteína 2, la segunda proteína más importante que conforma las lipoproteínas de alta densidad. APOA5 AA Codifica la apoliproteína A-V, una lipoproteína de alta densidad que transporta el colesterol de los tejidos hasta el hígado. BDKRB2 ID Codifica la bradicina, que está involucrada en la vasodilatación dependie del endotelio. CKM TT Codifica la creatina. COL1A1 CA Codifica para la proteína colágeno tipo I alfa I, que es el mayor constituyer de la matriz ósea, formando fuertes empaquetamientos de fibras en los tendones y ligamentos. COL5A1 CT Codifica para la proteína de represión catabólica, un polipéptido que influye entransporte de la glucosa. CYP AG Codifica la proteína de represión catabólica, un polipéptido que influye entransporte de la glucosa. C	ACTN3	TT	Estabiliza el aparato contráctil muscular en las fibras musculares de contracción rápida.
AGT AG El angiotensinó geno es un componente esencial del sistema renina- angiotensina que regula la resistencia vascular y la homeostasis de sodio por lo tanto, determina la presión arterial. AMPD1 GG Codifica para la proteína adenosina monofosfato deaminasa implicada en los procesos de obtención de energía a nivel de la mitocondria. APOA2 GG Codifica a la apoliproteína 2, la segunda proteína más importante que conforma las lipoproteínas de alta densidad. APOA5 AA Codifica la apoliproteína A-V, una lipoproteína de alta densidad que transporta el colesterol de los tejidos hasta el higado. BDKRB2 ID Codifica la bradicina, que está involucrada en la vasodilatación dependie del endotelio. CKM TT Codifica la enzima creatin kínasa muscular, encargada de proporcionar un grupo fosfato a la creatina. COL1A1 CA Codifica para la proteína colágeno tipo I alfa I, que es el mayor constituyer de la matriz ósea, formando fuertes empaquetamientos de fibras en los tendones y ligamentos. COL5A1 CT Codifica para el colágeno de cadena alfa 1 tipo V, se trata de una proteína o se encuentra en ligamentos y tendones. CYP AG Codifica la proteína de represión catabólica, un polipéptido que influye en transporte de la glucosa. CYP AG Codifica para la proteína tropoelastina, cuya unión forma la elastina, que e componente principal de las fibras elásticas, proporcionando resistencia y flexibilidad al tejido conectivo. FABP2 CC Codifica para la proteína sencargadas de la absorcióón y transporte de los ácidos grasos. Se relaciona con la regulación de los niveles de ghrelina, la cual increme el apetito y se asocia con una mayor predisposición a comer alimentos elevado contenido calórico.	ADRB2		Regula la expresión de los receptores adrenérgicos β tipo II.
angiotensina que regula la resistencia vascular y la homeostasis de sodio por lo tanto, determina la presión arterial. AMPD1 GG Codifica para la proteína adenosina monofosfato deaminasa implicada en los procesos de obtención de energía a nivel de la mitocondria. APOA2 GG Codifica a la apoliproteína 2, la segunda proteína más importante que conforma las lipoproteínas de alta densidad. APOA5 AA Codifica la apoliproteína A-V, una lipoproteína de alta densidad que transporta el colesterol de los tejidos hasta el higado. BDKRB2 ID Codifica la bradicina, que está involucrada en la vasodilatación dependie del endotelio. CKM TT Codifica la enzima creatin kinasa muscular, encargada de proporcionar un grupo fosfato a la creatina. COL1A1 CA Codifica para la proteína colágeno tipo I alfa I, que es el mayor constituyer de la matriz ósea, formando fuertes empaquetamientos de fibras en los tendones y ligamentos. COL5A1 CT Codifica para el colágeno de cadena alfa 1 tipo V, se trata de una proteína se encuentra en ligamentos y tendones. CRP TT Codifica la proteína de represión catabólica, un polipéptido que influye en transporte de la glucosa. CYP AG Codifican una serie de enzimas que participan en la primera fase (biotrans mación) de los procesos de detoxificación del hígado. ELN TT Codifica para la proteína tropoelastina, cuya unión forma la elastina, que ecomponente principal de las fibras elásticas, proporcionando resistencia y flexibilidad al tejido conectivo. FABP2 CC Codifica las proteínas encargadas de la absorcióón y transporte de los ácidos grasos. TT Se relaciona con la regulación de los niveles de ghrelina, la cual increme el apetito y se asocia con una mayor predisposición a comer alimentos elevado contenido calórico.	ADRB3	AA	Regula la expresión de los receptores adrenérgicos β tipo III.
los procesos de obtención de energía a nivel de la mitocondria. APOA2 GG Codifica a la apoliproteína 2, la segunda proteína más importante que conforma las lipoproteínas de alta densidad. APOA5 AA Codifica la apoliproteína A-V, una lipoproteína de alta densidad que transporta el colesterol de los tejidos hasta el hígado. BDKRB2 ID Codifica la bradicina, que está involucrada en la vasodilatación dependie del endotello. CKM TT Codifica la enzima creatin kinasa muscular, encargada de proporcionar un grupo fosfato a la creatina. COL1A1 CA Codifica para la proteína colágeno tipo I alfa I, que es el mayor constituyer de la matriz ósea, formando fuertes empaquetamientos de fibras en los tendones y ligamentos. COL5A1 CT Codifica para el colágeno de cadena alfa 1 tipo V, se trata de una proteína o se encuentra en ligamentos y tendones. CRP TT Codifica la proteína de represión catabólica, un polipéptido que influye en transporte de la glucosa. CYP AG Codifican una serie de enzimas que participan en la primera fase (biotrans mación) de los procesos de detoxificación del hígado. ELN TT Codifica para la proteína tropoelastina, cuya unión forma la elastina, que en componente principal de las fibras elásticas, proporcionando resistencia y flexibilidad al tejido conectivo. FABP2 CC Codifica las proteínas encargadas de la absorcióón y transporte de los ácidos grasos. TT Se relaciona con la regulación de los niveles de ghrelina, la cual increme el apetito y se asocia con una mayor predisposición a comer alimentos elevado contenido calórico.	AGT	AG	angiotensina que regula la resistencia vascular y la homeostasis de sodio y,
conforma las lipoproteínas de alta densidad. APOA5 AA Codifica la apoliprotíena A-V, una lipoproteína de alta densidad que transporta el colesterol de los tejidos hasta el hígado. BDKRB2 ID Codifica la bradicina, que está involucrada en la vasodilatación dependie del endotelio. CKM TT Codifica la enzima creatin kinasa muscular, encargada de proporcionar un grupo fosfato a la creatina. COL1A1 CA Codifica para la proteína colágeno tipo I alfa I, que es el mayor constituyer de la matriz ósea, formando fuertes empaquetamientos de fibras en los tendones y ligamentos. COL5A1 CT Codifica para el colágeno de cadena alfa 1 tipo V, se trata de una proteína de se encuentra en ligamentos y tendones. CRP TT Codifica la proteína de represión catabólica, un polipéptido que influye en transporte de la glucosa. CYP AG COdifica para la proteína de enzimas que participan en la primera fase (biotrans mación) de los procesos de detoxificación del hígado. ELN TT Codifica para la proteína tropoelastina, cuya unión forma la elastina, que ecomponente principal de las fibras elásticas, proporcionando resistencia y flexibilidad al tejido conectivo. FABP2 CC Codifica las proteínas encargadas de la absorcióón y transporte de los ácidos grasos. TT Se relaciona con la regulación de los niveles de ghrelina, la cual increme el apetito y se asocia con una mayor predisposición a comer alimentos elevado contenido calórico.	AMPD1	GG	Codifica para la proteína adenosina monofosfato deaminasa implicada en los procesos de obtención de energía a nivel de la mitocondria.
transporta el colesterol de los tejidos hasta el hígado. BDKRB2 D Codifica la bradicina, que está involucrada en la vasodilatación dependie del endotelio. CKM TT Codifica la enzima creatin kinasa muscular, encargada de proporcionar un grupo fosfato a la creatina. COL1A1 CA Codifica para la proteína colágeno tipo I alfa I, que es el mayor constituyer de la matriz ósea, formando fuertes empaquetamientos de fibras en los tendones y ligamentos. COL5A1 CT Codifica para el colágeno de cadena alfa 1 tipo V, se trata de una proteína o se encuentra en ligamentos y tendones. CRP TT Codifica la proteína de represión catabólica, un polipéptido que influye en transporte de la glucosa. CYP AG Codifican una serie de enzimas que participan en la primera fase (biotrans mación) de los procesos de detoxificación del hígado. ELN TT Codifica para la proteína tropoelastina, cuya unión forma la elastina, que ecomponente principal de las fibras elásticas, proporcionando resistencia y flexibilidad al tejido conectivo. FABP2 CC Codifica las proteínas encargadas de la absorcióón y transporte de los ácidos grasos. TT Se relaciona con la regulación de los niveles de ghrelina, la cual increme el apetito y se asocia con una mayor predisposición a comer alimentos elevado contenido calórico. GDF5 AG Codifica la proteína GDF5, que está involucrada en el mantenimiento,	APOA2	GG	
CKM TT Codifica la enzima creatin kinasa muscular, encargada de proporcionar un grupo fosfato a la creatina. COL1A1 CA Codifica para la proteína colágeno tipo I alfa I, que es el mayor constituyer de la matriz ósea, formando fuertes empaquetamientos de fibras en los tendones y ligamentos. COL5A1 CT Codifica para el colágeno de cadena alfa 1 tipo V, se trata de una proteína de se encuentra en ligamentos y tendones. CRP TT Codifica la proteína de represión catabólica, un polipéptido que influye en transporte de la glucosa. CYP AG Codifican una serie de enzimas que participan en la primera fase (biotrans mación) de los procesos de detoxificación del hígado. ELN TT Codifica para la proteína tropoelastina, cuya unión forma la elastina, que es componente principal de las fibras elásticas, proporcionando resistencia y flexibilidad al tejido conectivo. FABP2 CC Codifica las proteínas encargadas de la absorcióón y transporte de los ácidos grasos. TT Se relaciona con la regulación de los niveles de ghrelina, la cual increme el apetito y se asocia con una mayor predisposición a comer alimentos elevado contenido calórico. GDF5 AG Codifica la proteína GDF5, que está involucrada en el mantenimiento,	APOA5	AA	
COL1A1 CA Codifica para la proteína colágeno tipo I alfa I, que es el mayor constituyer de la matriz ósea, formando fuertes empaquetamientos de fibras en los tendones y ligamentos. COL5A1 CT Codifica para el colágeno de cadena alfa 1 tipo V, se trata de una proteína de se encuentra en ligamentos y tendones. CRP TT Codifica la proteína de represión catabólica, un polipéptido que influye en transporte de la glucosa. CYP AG Codifican una serie de enzimas que participan en la primera fase (biotrans mación) de los procesos de detoxificación del hígado. ELN TT Codifica para la proteína tropoelastina, cuya unión forma la elastina, que es componente principal de las fibras elásticas, proporcionando resistencia y flexibilidad al tejido conectivo. FABP2 CC Codifica las proteínas encargadas de la absorcióón y transporte de los ácidos grasos. TT Se relaciona con la regulación de los niveles de ghrelina, la cual increme el apetito y se asocia con una mayor predisposición a comer alimentos elevado contenido calórico. Codifica la proteína GDF5, que está involucrada en el mantenimiento,	BDKRB2	ID	Codifica la bradicina, que está involucrada en la vasodilatación dependiente del endotelio.
de la matriz ósea, formando fuertes empaquetamientos de fibras en los tendones y ligamentos. COL5A1 CT Codifica para el colágeno de cadena alfa 1 tipo V, se trata de una proteína o se encuentra en ligamentos y tendones. CRP TT Codifica la proteína de represión catabólica, un polipéptido que influye en transporte de la glucosa. CYP AG Codifican una serie de enzimas que participan en la primera fase (biotrans mación) de los procesos de detoxificación del hígado. ELN TT Codifica para la proteína tropoelastina, cuya unión forma la elastina, que es componente principal de las fibras elásticas, proporcionando resistencia y flexibilidad al tejido conectivo. FABP2 CC Codifica las proteínas encargadas de la absorcióón y transporte de los ácidos grasos. TT Se relaciona con la regulación de los niveles de ghrelina, la cual increme el apetito y se asocia con una mayor predisposición a comer alimentos elevado contenido calórico. GDF5 AG Codifica la proteína GDF5, que está involucrada en el mantenimiento,	СКМ	TT	Codifica la enzima creatin kinasa muscular, encargada de proporcionar un grupo fosfato a la creatina.
Se encuentra en ligamentos y tendones. CRP TT Codifica la proteína de represión catabólica, un polipéptido que influye en transporte de la glucosa. CYP AG Codifican una serie de enzimas que participan en la primera fase (biotrans mación) de los procesos de detoxificación del hígado. ELN TT Codifica para la proteína tropoelastina, cuya unión forma la elastina, que escomponente principal de las fibras elásticas, proporcionando resistencia y flexibilidad al tejido conectivo. FABP2 CC Codifica las proteínas encargadas de la absorcióón y transporte de los ácidos grasos. TT Se relaciona con la regulación de los niveles de ghrelina, la cual increme el apetito y se asocia con una mayor predisposición a comer alimentos elevado contenido calórico. GDF5 AG Codifica la proteína GDF5, que está involucrada en el mantenimiento,	COL1A1	CA	
transporte de la glucosa. CYP AG Codifican una serie de enzimas que participan en la primera fase (biotrans mación) de los procesos de detoxificación del hígado. ELN TT Codifica para la proteína tropoelastina, cuya unión forma la elastina, que escomponente principal de las fibras elásticas, proporcionando resistencia y flexibilidad al tejido conectivo. FABP2 CC Codifica las proteínas encargadas de la absorcióón y transporte de los ácidos grasos. TT Se relaciona con la regulación de los niveles de ghrelina, la cual increme el apetito y se asocia con una mayor predisposición a comer alimentos elevado contenido calórico. Codifica la proteína GDF5, que está involucrada en el mantenimiento,	COL5A1	СТ	Codifica para el colágeno de cadena alfa 1 tipo V, se trata de una proteína que se encuentra en ligamentos y tendones.
CA mación) de los procesos de detoxificación del hígado. ELN TT Codifica para la proteína tropoelastina, cuya unión forma la elastina, que es componente principal de las fibras elásticas, proporcionando resistencia y flexibilidad al tejido conectivo. FABP2 CC Codifica las proteínas encargadas de la absorcióón y transporte de los ácidos grasos. TT Se relaciona con la regulación de los niveles de ghrelina, la cual increme el apetito y se asocia con una mayor predisposición a comer alimentos elevado contenido calórico. GDF5 AG Codifica la proteína GDF5, que está involucrada en el mantenimiento,	CRP	TT	Codifica la proteína de represión catabólica, un polipéptido que influye en el transporte de la glucosa.
componente principal de las fibras elásticas, proporcionando resistencia y flexibilidad al tejido conectivo. FABP2 CC Codifica las proteínas encargadas de la absorcióón y transporte de los ácidos grasos. TT Se relaciona con la regulación de los niveles de ghrelina, la cual increme el apetito y se asocia con una mayor predisposición a comer alimentos elevado contenido calórico. GDF5 AG Codifica la proteína GDF5, que está involucrada en el mantenimiento,	СҮР		Codifican una serie de enzimas que participan en la primera fase (biotransformación) de los procesos de detoxificación del hígado.
fto GG GG TT GDF5 AG AG Acidos grasos. Se relaciona con la regulación de los niveles de ghrelina, la cual increme el apetito y se asocia con una mayor predisposición a comer alimentos elevado contenido calórico. Codifica la proteína GDF5, que está involucrada en el mantenimiento,	ELN	TT	Codifica para la proteína tropoelastina, cuya unión forma la elastina, que es el componente principal de las fibras elásticas, proporcionando resistencia y flexibilidad al tejido conectivo.
FTO GG Hardina con la regulación de los niveles de ghrelina, la cual increme el apetito y se asocia con una mayor predisposición a comer alimentos elevado contenido calórico. GDF5 AG Codifica la proteína GDF5, que está involucrada en el mantenimiento,	FABP2	CC	
GDF5 AG Codifica la proteína GDF5, que está involucrada en el mantenimiento,	FTO	GG	Se relaciona con la regulación de los niveles de ghrelina, la cual incrementa el apetito y se asocia con una mayor predisposición a comer alimentos de elevado contenido calórico.
desarrollo y reparación de nuesos, cartilago y tejidos biandos.	GDF5	AG	Codifica la proteína GDF5, que está involucrada en el mantenimiento, desarrollo y reparación de huesos, cartílago y tejidos blandos.

Gen	Su genotipo	Descripción
GDF8	TT	Codifica la proteína miostatina, conocida como factor 8 de crecimiento y diferenciación que limita el crecimiento muscular.
GHR	GG	Codifica la expresión de la hormona ghrelina, que se produce en el estómago antes de comer, estimulando el apetito.
GNB3	СТ	Codifica la proteína G, que juega un papel imporante en la formación de los adipocitos.
GSTM1	II	Codifica la enzima GSTM1 que combate el estrés oxidativo mediante la conjugación con glutatión.
GSTT1	DD	Codifica la enzima GSTT1 que combate el estrés oxidativo mediante la conjugación con glutatión.
HIF1A	СТ	Codifica para proteínas estimuladoras de producción de glóbulos rojos y enzimas glucolíticos en respuesta a estados de hipoxia.
IL6	CG	Expresa la interleucina-6 (IL-6), citocina multifuncional que interviene en procesos como la inflamación, proliferación, deferenciación y supervivencia de las células diana.
MC4R	TT CC	Modula la saciedad mediante el proceso de termogénesis del tejido adiposo.
MNSOD	GG	Codifica la enzima superóxido dismutasa que forma parte de los sistemas antioxidantes que posee el organismo para eliminar los radicales libres.
MTHF	AA	Codifica para la proteína metilentetrahidrofolato reductasa. Esta enzima participa en los procesos de metilación del ADN.
NOS3	СТ	Codifica la enzima eNOS, que cataliza la conversión del aminoácido L-arginina a óxido nítrico, que participa en los procesos de vasodiltación y absorción de la glucosa.
NRF2	AA	Codifica un regulador transcripcional de los genes implicados en la activación de la expresión de la citocromo oxidasa, así como el control nuclear de la función mitocondrial.
NYP	TT	Codifica el neuropéptido Y que en condiciones de hipoglucemia conduce señales estimuladoras del apetito.
PLIN1	СС	Codifica la proteína pirilipina, que regula el metabolismo en los adipocitos mediante la interacción con la hormona lipasa.
PPARA1	СС	Regula junto a PPARA2 el metabolismo lipídico del hígado, el corazón y el músculo esquelético, la homeostasis de la glucosa, la biogénesis mitocondrial y la hipertrofia cardíaca.
PPARA2	GG	Regula junto a PPARA1 el metabolismo lipídico del hígado, el corazón y el músculo esquelético, la homeostasis de la glucosa, la biogénesis mitocondrial y la hipertrofia cardíaca.
PPARG	GG	Codifica la proteína PPARa que modula la actividad de 3 sistemas de oxidación de grasas saturadas (mitocondrial, peroxisomal y microsomal).
PPARGC1	СТ	Regula la oxidación de ácidos grasos, la utilización de glucosa, la biogénesis mitocondrial, la termogénesis, la angiogénesis y la formación de fibras musculares.
TRHR	CC	Estimula la liberación de tiroxina, que es importante en el desarrollo muscular.
VEGFA	GG	Factor de crecimiento activo en angiogénesis, vasculogénesis y crecimiento de células endoteliales.

7 CONCLUSIONES

Nutrición y control del peso corporal

- Cafeína: Limitar el consumo de café a 2 tazas al día como máximo. De cara al rendimiento deportivo, consumirlo como mínimo 1 hora antes de realizar ejercicio.
- · Carbohidratos complejos: Limitar su ingesta.
- Carbohidratos simples: Limitar la ingesta de carbohidratos simples provenientes de azúcares refinados y melazas.
- Grasas: Consumir ácidos grasos insaturados, que provienen de pescados, frutas, semillas, cereales y frutos secos.
- Grasas saturadas: Limitar la ingesta de ácidos grasos saturados e ingerir grasas ricas en Omega-3.
- Oxidación lipídica: Consumo de sustancias que aumenten la concentración de las catecolaminas como la cafeína; y/o principios activos que inhiban su degradación, como las catequinas, presentes en el té verde. Realizar ejercicios a alta intensidad e incorporar entrenamientos con sobrecargas.

Fuerza

- Fibras rápidas: Se recomienda emplear cargas sumáximas, entre 67 % y el 85 % de 1RM, hasta fallo muscular, con pausas de recuperación de 1 minuto aproximadamente.
- Sistema ATP-PC: La suplementación con creatina puede ser recomendable. Se puede consultar en el 'Anexo 2' que suplementos contienen monohidrato de creatina.

Resistencia

- Capacidad máxima de O₂: Entrenamiento técnico y del umbral anaeróbico, mejorar los niveles de fuerza muscular y aumentar la fuerza muscular máxima.
- Eficiencia lipoenergética: Utilizar activadores metabólicos que aumenten la ruta de las catecolaminas. Utilizar durante el entrenamiento y competición suplementación deportiva. Consumir café, no obstante, la dosis y el tiempo de administración dependerá de la capacidad de absorción del individuo la cual se ha determinado en el test genético.
- Estado hídrico: El sujeto no tiene una predisposición negativa a la deshidratación, a pesar de esto, se recomienda seguir las recomendaciones generales para la hidratación.
- Estrés oxidativo: Ingesta de alimentos ricos en antioxidantes, los cuales son aquellos que contienen principalmente las vitaminas A,E y C. Suplementación: antioxidantes y multivitamínicos.
- Rendimiento en hipoxia: Incorporar entrenamientos que estimulen las adaptaciones fisiológicas a hipoxia, tales como son el entrenamiento en altura y/o que simulen entrenamientos en altitud.

Lesiones

- Fracturas óseas: Aumentar el consumo de glucosamina, condroitina y MSM.
- Lesiones musculares: Dosificar la carga de entrenamiento, incorporar entrenamientos de sobrecarga excéntrica y el consumo de recuperadores musculares.
- Recuperación tras lesionarse: Se recomienda la ingesta de magnesio.

8 GLOSARIO DE TÉRMINOS

ADN: Ácido desoxirribonucleico que contiene la información genética necesaria para el funcionamiento del organismo.

Aminoácido: Unidades de las que están compuestas las proteínas.

Alelo: Cada una de las dos copias de cada gen que tenemos en nuestras células, una proviene del padre y otra de la madre.

ARN: Ácido ribonucléico, el DNA se transcribe a RNA mensajero, copiándose la información necesaria, en la cantidad requerida, en cada momento y tejido. A partir del RNA mensajero se traduce la proteína.

Apetito: Sensación de hambre o ganas de comer que estará mediatizada por la interacción de múltiples procesos e interacciones de carácter fisiológico, hormonal y conductual.

Cinc: Mineral que interviene en múltiples reacciones, algunas de excepcional importancia en el deportista como el transporte de CO_2 . Actúa en los procesos de crecimiento, síntesis de proteínas, sistema energético, sistema inmune y liberación de radicales libres.

Codón: Combinación de tres bases (letras) del DNA, que codifican para un determinado aminoácido. Varios codones puede codificar para un mismo aminoácido.

Exón: Fragmentos de DNA consecuencia codificante dentro de cada gen.

Fenotipo: El genotipo modulado por el ambiente determina las características o rasgos observables. Estas características se conocen como fenotipo.

Gen: Región del DNA que tiene toda la información necesaria para codificar una proteína.

Genotipo: Información genética que posee un organismo.

Grelina: La grelina es una hormona que se secreta en el estómago cuando está vacío. Esta hormona envía señales al cerebro indicándole que necesita comer, aumentando la sensación de apetito.

Heterozigoto: Que tiene los dos alelos diferentes para un determinado carácter.

Homozigoto: Que tiene los dos alelos iguales para un determinado carácter.

Insulina: La insulina es secretada por el páncreas para normalizar los niveles elevados de glucosa en sangre, activando la formación de glucógeno y grasa.

Intrón Fragmentos de DNA consecuencia no codificante dentro de cada gen. Estos fragmentos son eliminados en el paso de DNA a RNA mensajero.

Leptina: La leptina es una hormona que se asocia a una disminución del apetito a través de la activación de la termogénesis del tejido adiposo marrón. Las personas con menores niveles de leptina, o resistencia a la leptina tienen la necesidad de ingerir más cantidad de alimentos y a picar entre horas, además, tienen un especial apetito por la ingesta alta de carbohidratos de absorción rápida y generalmente no duermen bien.

Magnesio: Mineral muy importante en numerosos procesos metabólicos, es un cofactor de absorción de insulina, hormona fundamental para la metabolización celular de proteínas y construcción de nuevos tejidos musculares así como para la transmisión del impulso nervioso y la producción de energía.

Mutación: Alteración de la estructura genética poco frecuente (menor de un 1%) entre la población.

Sodio (sal): El sodio es un mineral que actúa junto al potasio para mantener el balance de fluidos entre las células e interviene en la transmisión nerviosa para producir la contracción muscular. Además, previene la deshidratación producida por el exceso de calor y/o sol.

Splicing: Proceso mediante el cual se eliminan los intrones en la molécula de ARN mensajero.

Polimorfismo: Variación en la secuencia de DNA frecuente (mayor al 1%) entre la población.

Proteína: Biomolécula que es el constituyente fundamental de los seres vivos. Multitud de diferentes proteínas llevan a cabo las principales funciones celulares.

Promotor: Región de cada gen que le indica cuándo, cuánto y dónde debe traducirse la información del gen hasta generar la proteína que codifica.

Termogénesis de la grasa parda: La termogénesis de la grasa parda es el proceso mediante el cual mantenemos la homeostasis de la temperatura corporal generando calor a partir de su oxidación.

Umbral anaeróbico: El término umbral anaeróbico se emplea para describir un fenómeno fisiológico en el que a partir de una intensidad de esfuerzo el lactato se incrementa de forma constante. En la práctica, el umbral láctico determina la fracción del consumo máximo que puede ser mantenida por un individuo en competiciones de resistencia. Los atletas con un mayor rendimiento deportivo en pruebas de larga duración acumulan menos lactato a intensidades más elevadas. Este fenómeno se conoce como estado estable del lactato (MLSS) o inicio del acúmulo de lactato en sangre (OBLA) y podría ser el factor más determinante para el rendimiento en estas disciplinas deportivas.

 VO_2 max: El consumo máximo de oxígeno es el criterio más empleado para evaluar la capacidad de rendimiento aeróbico y se encuentra directamente relacionado con el sistema cardiopulmonar, el metabolismo del músculo estriado y las variaciones de la contractilidad muscular. Diversos estudios corroboran que mediante el entrenamiento se puede mejorar como máximo un 30 %. La predisposición genética del sujeto juega por lo tanto un papel central. A nivel fisiológico, el VO_2 max es dependiente de:

- · La capacidad de obtención de energía a partir de los procesos aeróbicos.
- Factores hemáticos y respiratorios: captadores y transportadores de oxígeno.

El VO₂ max es determinante en pruebas de corta duración y limitante en en pruebas de larga duración, ya que en este tipo de pruebas influyen más factores como son: la economía o el umbral anaeróbico; no obstante un consumo máximo muy bajo condicionará el desarrollo del umbral.

9 DATOS TÉCNICOS Y CONTACTO

La metodología utilizada para la realización del test a partir del ADN extraído de células bucales obtenidas por un raspado bucal no invasivo con hisopo, fue mediante un sistema de alta capacidad de amplificación y secuenciación del ADN a través de secuenciación masiva o de nueva generación (NGS).

Éste es un informe de naturaleza clínica y como tal debe ser valorado por el profesional adecuado. Deje que sea su médico, entrenador o nutricionista quien interprete los resultados. Él es el que puede aprovechar mejor la información que contiene, para ayudarle en función de su historia clínica y sus circunstancias personales.

Para cualquier duda, consulta o aclaración, le atenderemos a través del email: info@overgenes.com

A Anexo 1: Alimentación y nutrición

Nutriente	Alimentos	
Ácido alfa lipoico	Riñones, hígado, lácteos, huevos, marico, espinacas, brócoli, tomate, acelgas	
Antiinflamatorios	Frutos de baya, vegetales de hoja verde, pimiento, remolacha, tomate, pescado azul, frutos secos, legumbres, jengibre, cúrcuma	
BCAA's	Carnes, pescados, legumbres, frutos secos	
Biogénesis mitocondrial	Vitaminas del complejo B, magnesio, CoQ10, ácido alfa lipoico	
Cafeína	Café, chocolate amargo	
CHO complejos: almidón y féculas	Tubérculos, cereales y legumbres: sarraceno, quinoa, maiz, boniato, patata, garbanzos, judias, habas	
CHO complejos: vegetales y frutas	Brócoli, espinácas, espárrago, pomelos, moras, cerezas, albaricoque	
Catequinas	Té verde, canela, lúpulo, cacao	
CHO +carga glucémica	Pan blanco, pastas, arroz, bebidas energéticas, legumbres en conserva	
CHO -carga glucémica	Frutos secos, frutas y verduras, raciones pequeñas (20 gr.) de tubérculos y legumbres	
Cobre	Almendras, nueces, guisantes	
Coenzima Q10	Pescado azul, corazón e hígado de cerdo, huevos, soja, semillas, espinacas, pollo, brócoli, tofu, frutos secos	
Colágeno	huevo, salmón, venado, vacuno, cordero, pollo,caldo de huesos	
Glutamina	Lácteos, carnes rojas, pescados, huevos, lechuga, perejil, col, aloe vera, rúcula	
Leucina / HMB	Carnes, parmesano, atún fresco, semillas de calabaza, soja	
Licopeno	Tomate, frutas y verduras de coloración roja: papaya, sandía	
Lisina	Leche, queso, huevo, pollo, ternera, soja, tofu, berros, quinoa, germen de trigo	
L-triptófano	Aves, huevos, pescado azul, lácteos, plátano, piña, aguacate, ciruela, semillas, espinacas, zanahoria, apio	
Magnesio	Semillas, almendras, cacahuetes, pistachos, chocolate negro, pan integral	
Omega 3	Sardinas, anchoas, boquerones, salmón , atún, aguacate, nueces	
Polifenoles	Aceite de oliva virgen extra, bayas, té verde, chocolate	
Prolina Proteínas de alto valor	Gelatinas, col, soja, espárragos, rape, bacalao, ternera, pollo	
biológico Recuperadores	Pescado, marisco, carne magra, huevos, lácteos, legumbres	
Riboflavina	Ginseng, miel, higos, avena, aguacate, maca, açaí	
Selenio	Germen de trigo, arroz salvaje, guisantes, lentejas, centeno integral	
Termogénicos	Ajo, cebolla, nueces de Brasil, huevos, salmón	
Vitamina C	Pimientos picantes, pimienta, mostaza, jengibre, curry, cúrcuma, café, canela	
Vitamina E	Cítricos, pimientos crudos, coles, kiwi, mango, espinacas	
Nitratos	Legumbres, hígado, frutos secos, cereales integrales, semillas	
Vitamina B1	Remolacha, espinacas, acelgas, berros, rúcula, apio, endibia, hinojo, puerro	
Vitamina B2	Vegetales de hoja verde, atún, lentejas	
Vitamina B3 (Niacina)	Vegetales de hoja verde, pollo, pescado, huevos, lácteos Avena, cereales y pan integrales, huevos, setas, legumbres, mango, frutos secos,	
Vitamina B6	carnes Espinacas, plátano, ajo, patatas	
Vitamina B9 (Folato)	Vegetales de hoja verde, espárragos, algas, germen de trigo, judias, hígado, soja	
Vitamina B12	Carne de vacuno, hígado, pollo, huevos, moluscos, crustáceos, pescado azul	
Zinc	Ostras, cangrejo, carne de vacuno, pollo	
	22	

B Anexo 2: Suplementación

La genética de cada individuo condiciona a que puedan existir dificultades para catalizar algunos procesos fisiológicos. Incluso cuando se lleva a cabo una dieta variada y equilibrada, puede ser complicado satisfacer las necesidades nutricionales para regular estas funciones óptimamente.

El uso de suplementación permitirá asegurar que el organismo reciba los nutrientes necesarios para aquellos mecanismos fisiológicos que requieren mejorar su efectividad.

La suplementación, por tanto, no ha de sustituir un adecuado régimen alimenticio, pero sí permite asegurar que no existan deficiencias de determinados nutrientes.

Objetivo nutricional	Suplementos
Antioxidantes enzimáticos	Cinc
Antioxidantes no enzimáticos	Conenzima Q10
Aportación inmediata de energía	Amylopeptina, dextrinas
Biogénesis mitocondrial	Coenzima Q10, magnesio
Bloqueantes de las grasas	Chitosan
Buffers de lactato	eta-alanina
Colesterol y triglicéridos	Omega 3
Condoprotectores	Glucosamina, condroitina
Creatina	Monohidrato de creatina
Enzima lipasa	Enzima lipasa
Grelina	Consumir proteínas
Hormona del crecimiento	L-arginina y L-ornitina
Inflamación	Omega 3
Leptina	Omega 3 y ácido alfa lipoico
Movilizar la grasa abdominal	L-tirosina
Recuperación de la energía	Glutamina, bcaa
Saciedad	Garcinia Cambogia y Picolinato de Cromo
Síntesis de colágeno	Vitamina C
Síntesis de proteínas	BCAA, glutamina
Sueño	Triptófano
Termogénesis de la grasa parda	Irvingia gabonensis
Termogénesis de la ruta de las catecolaminzas	Catequinas, café
Transporte de grasas	L-carnitina
Vasodilatadores: vía de los nitratos	Nitratos orgánicos
Vasodilatadores: vía del óxido nítrico	L-argilina y L-citrunila
Vitaminas B12 y Ácido fólico	Vitamina B12 y ácido fólico